Вы находитесь:
Joomla Templates and Joomla Extensions by JoomlaVision.Com
Аллюминий

Аллюминий 

Физические характеристики сплавов Сплав АД1 - это алюминий технической чистоты, содержащий до 0,7% примесей, главные из которых - Fe и Si . Примеси Fe и Si ., а так же…

Медь

Медь 

Прутки медные Тянутые медные прутки круглого, квадратного, шестигранного сечения и прессованные прутки круглого сечения производят по ГОСТ 1535-91. Прутки изготовляют в соответствии с требованиями настоящего стандарта из меди марок М1,…

Латунь

Латунь 

Латуни представляют собой двойные или компонентные медные сплавы, в которых цинк является основным легирующим компонентом. По химическому составу двойные латуни, содержащие до цинка, называются томпаком, а латуни, содержащие 14-20% цинка…

Бронза

Бронза 

К бронзам относят сплавы на основе меди, содержащие более 2,5% (по массе) легирующих компонентов. В бронзах содержание цинка не должно превышать содержание суммы других легирующих элементов, иначе сплав будет относится…

Нержавейка

Нержавейка 

  Где используется нержавеющая сталь Нержавеющую сталь используют во всех сферах деятельности человека, начиная от тяжелого машиностроения, заканчивая электроникой и точной механикой. Наиболее большее применение она нашла в: Строительстве и…

12345

Биржа металлов

Курсы валют

Погода

GISMETEO: Погода по г.Рязань

Кто на сайте

Сейчас 23 гостей онлайн

Статистика

Сварка отечественными электродами

Сварка высоколегированных сталей и сплавов на железоникелевой и никелевой основах осуществляется двумя видами электродов: электродами для сварки коррозионно-стойких материалов и электродами для сварки жаростойких и жаропрочных сталей и сплавов.

Согласно действующей классификации к высоколегированным сталям относят сплавы, содержание железа в которых более 45%, а суммарное содержание легирующих элементов не менее 10%, считая по верхнему пределу при концентрации одного из элементов не менее 8% по нижнему пределу. К сплавам на никелевой основе относят сплавы с содержанием не менее 55% никеля. Промежуточное положение занимают сплавы на железоникелевой основе.

В соответствии с ГОСТ 10052-75 электроды для сварки высоколегированных коррозионно-стойких, жаростойких и жаропрочных сталей и сплавов по химическому составу наплавленного металла и механическим свойствам металла шва и наплавленного металла классифицированы на 49 типов (например, электроды типа Э-07Х20Н9, Э-10Х20Н70Г2М2Б2В, Э-28Х24Н16Г6). Наплавленный металл значительной части электродов, регламентируется техническими условиями предприятий - изготовителей.

Химический состав и структура наплавленного металла электродов для сварки высоколегированных сталей и сплавов отличаются - и иногда весьма существенно - от состава и структуры свариваемых материалов. Основными показателями, решающими вопрос выбора таких электродов, является обеспечение: основных эксплуатационных характеристик сварных соединений (механических свойств, коррозионной стойкости, жаростойкости, жаропрочности), стойкости металла шва против образования трещин, требуемого комплекса сварочно-технологических свойств.

Электроды для сварки высоколегированных сталей и сплавов имеют покрытия основного, рутилового и рутилово-основного видов. Из-за низкой теплопроводности и высокого электросопротивления скорость плавления, а следовательно и коэффициент наплавки электродов со стержнями из высоколегированных сталей и сплавов существенно выше, чем у электродов для сварки углеродистых, низколегированных и легированных сталей. Вместе с тем повышенное электросопротивление металла электродного стержня обуславливает необходимость применения при сварке пониженных значений тока и уменьшения длины самих стержней (электродов). В противном случае из-за чрезмерного нагрева стержня возможен перегрев покрытия и изменение характера его плавления, вплоть до отваливания отдельных кусков.

Сварка, как правило, производится постоянным током обратной полярности.

Электроды для сварки коррозионно-стойких сталей и сплавов

Электроды этой группы обеспечивают получение сварных соединений, обладающих требуемой стойкостью против коррозии в атмосферной, кислотной, щелочной и других агрессивных средах.

Некоторые марки электродов данной группы имеют более широкую область применения и их можно использовать не только для получения соединений с требуемыми коррозионной стойкостью, но и в качестве электродов, обеспечивающих высокую жаростойкость и жаропрочность металла шва.

Марка электрода

Тип электрода по ГОСТ 10052-75 или тип наплавленного металла

Диаметр, мм

Основное назначение

Дополнительная или сопутствующая области применения

1

2

3

4

5

УОНИ-13/НЖ

12Х13

Э-12Х13

2,0; 2,5; 3,0; 4,0; 5,0

Сварка хромистых сталей типа 08Х13 и 12Х13

Наплавка уплотнительных поверхностей стальной арматуры

ОЗЛ-22

Э-02Х21Н10Г2

3,0; 4,0

Сварка оборудования из сталей типа 04Х18Н10, 03Х18Н12, 03Х18Н11, работающего в окислительных средах, подобных азотной кислоте

 

ОЗЛ-8

Э-07Х20Н9

2,0; 2,5; 3,0; 4,0; 5,0

Сварка сталей типа 08Х18Н10, 12Х18Н9 и 08Х18Н10Т, когда к металлу шва не предъявляют жесткие требования стойкости к МКК

 

ОЗЛ-8С

08Х20Н9КМВ

2,5; 3,0; 4,0

Сварка сталей типа 08Х18Н10, 12Х18Н9 и 08Х18Н10Т, когда к металлу шва не предъявляют жесткие требования стойкости к МКК

Сварка с повышенной производительностью

ОЗЛ-14

Э-07Х20Н9

3,0; 4,0

Сварка сталей типа 08Х18Н10, 12Х18Н9 и 08Х18Н10Т, когда к металлу шва не предъявляют жесткие требования стойкости к МКК

Возможна сварка переменным током

ОЗЛ-14А

Э-04Х20Н9

3,0; 4,0; 5,0

Сварка сталей типа 08Х18Н10, 08Х18Н10Т, 06Х18Н11 и 08Х18Н12Т, когда к металлу шва предъявляют требования стойкости к МКК

 

ОЗЛ-36

Э-04Х20Н9

3,0; 4,0; 5,0

Сварка сталей типа 08Х18Н10, 06Х18Н11, 08Х18Н12Т и 08Х18Н10Т, когда к металлу шва предъявляют требования стойкости к МКК

 

ЦЛ-11

Э-08Х20Н9Г2Б

2,0; 2,5; 3,0; 4,0; 5,0

Сварка сталей типа 12Х18Н10Т, 12Х18Н9Т, 08Х18Н12Т и 08Х18Н12Б, когда к металлу шва предъявляют жесткие требования стойкости к МКК

Сварка оборудования из сталей типа 12Х18Н10Т, 12Х18Н9Т, 08Х18Н12Т и 08Х18Н12Б для пищевой промышленности

ЦЛ-11С/Ч

Э-08Х20Н9Г2Б

2,5; 3,0; 4,0

Сварка сталей типа 08Х18Н10, 08Х18Н12Б и 08Х18Н10Т, когда к металлу шва предъявляют требования стойкости к МКК

Сварка с повышенной производительностью

ОЗЛ-7

Э-08Х20Н9Г2Б

2,0; 2,5; 3,0; 4,0; 5,0

Сварка сталей типа 08Х18Н10, 08Х18Н12Б и 08Х18Н10Т, когда к металлу шва предъявляют жесткие требования стойкости к МКК

Сварка оборудования из сталей типа 08Х18Н10, 08Х18Н12Б и 08Х18Н10Т для пищевой промышленности

ЦТ-15

Э-08Х19Н10Г2Б

2,0; 2,5; 3,0; 4,0; 5,0

См. группу электродов для сварки жаростойких и жаропрочных сталей и сплавов

Сварка сталей типа 12Х18Н9Т, 12Х18Н12Т, Х20Н12Т-Л и Х16Н13Б, когда к металлу шва предъявляют жесткие требования стойкости к МКК

ЦЛ-9

Э-10Х25Н13Г2Б

3,0; 4,0; 5,0

Сварка двухслойных сталей со стороны легированного слоя из сталей типа 12Х18Н10Т, 12Х18Н9Т и 08Х13, когда к металлу шва предъявляют требования стойкости к МКК

 

ОЗЛ-40

08Х22Н7Г2Б

3,0; 4,0

Сварка сталей марок 08Х22Н6Т и 12Х21Н5Т

 

ОЗЛ-41

08Х22Н7Г2М2Б

3,0; 4,0

Сварка стали марки 08Х21Н6М2Т

Возможна сварка стали марки 03Х24Н6АМ3

ОЗЛ-20

Э-02Х20Н14Г2М2

3,0; 4,0

Сварка оборудования из сталей типа 03Х16Н15М3 и 03Х17Н14М2, работающего в средах высокой агрессивности

Возможна сварка оборудования из стали марки 08Х17Н15М3Т, работающего в средах высокой агрессивности

ЭА-400/10У

ЭА-400/10Т

08Х18Н11М3Г2Ф

2,0; 2,5; 3,0; 4,0; 5,0

Сварка оборудования из сталей типа 08Х18Н10Т и 10Х17Н13М2Т, работающего в агрессивных средах при температуре до 350 С, когда к металлу шва предъявляют требования стойкости к МКК

 

НЖ-13

Э-09Х19Н10Г2М2Б

3,0; 4,0; 5,0

Сварка оборудования из сталей типа 10Х17Н13М3Т, 08Х21Н6М2Т и 10Х17Н13М2Т, работающего при температуре до 350 С, когда к металлу шва предъявляют требования к стойкости к МКК

 

НЖ-13С

Э-09Х19Н10Г2М2Б

3,0; 4,0

Сварка оборудования из сталей типа 10Х17Н13М2Т, 10Х17Н13М3Т и 08Х21Н6М2Т, работающего при температуре до 3500С, когда к металлу шва предъявляют требования стойкости к МКК

Сварка с высокой производительностью

НИАТ-1

Э-08Х17Н8М2

2,0; 2,5; 3,0; 4,0; 5,0

Сварка сталей типа 08Х18Н10, 12Х18Н10Т и 10Х17Н13М2Т, когда к металлу шва предъявляют требования стойкости к МКК

 

ОЗЛ-3

14Х17Н13С4Г

3,0; 4,0; 5,0

Сварка оборудования из стали 15Х18Н12С4ТЮ, работающего в средах повышенной агрессивности, когда к металлу шва не предъявляют требования стойкости к МКК

 

ОЗЛ-24

02Х17Н14С5

3,0; 4,0

Сварка оборудования из сталей типа 02Х8Н20С6, работающего в условиях производства 98%-ной азотной кислоты

 

ОЗЛ-17У

03Х23Н27М3Д3Г2Б

3,0; 4,0

Сварка оборудования из сплавов марок 06ХН28МДТ и 03ХН28МДТ и стали марки 03Х21Н21М4ГБ преимущественно толщиной до 12 мм, работающего в средах серной и фосфорной кислот с примесями фтористых соединений

 

ОЗЛ-37-2

03Х24Н26М3Д3Г2Б

3,0; 4,0

Сварка оборудования из сплавов марок 03Х23Н25М3Д3Б, 06ХН28МДТ и 03ХН28МДТ и стали марки 03Х21Н21М4ГБ преимущественно толщиной до 12 мм, работающего в средах серной и фосфорной кислот с примесями фтористых соединений

 

ОЗЛ-21

Э-02Х20Н60М15В3

3,0

Сварка оборудования из сплавов типа ХН65МВ и ХН60МБ, работающего в высокоагрессивных средах, когда к металлу шва предъявляют требования стойкости к МКК

 

Электроды для сварки жаростойких и жаропрочных сталей и сплавов

Общая краткая характеристика

Электроды этой группы обеспечивают получение сварных соединений с требуемой жаростойкостью и/или жаропрочностью. Жаростойкими сварными соединениями являются соединения, обладающие высокой стойкостью против химического разрушения поверхности в газовых средах при температурах свыше 550-6000С. Жаропрочными сварными соединениями являются соединения, работающие при этих температурах в нагруженном состоянии в течение определенного времени (жаропрочные соединения должны обладать при этом достаточной жаростойкостью).

Некоторые марки электродов, предназначенные для сварки жаростойких и/или жаропрочных материалов, используются для сварки коррозионно-стойких и разнородных сталей и сплавов

Марка электрода

Тип электрода по ГОСТ 10052-75 или тип наплавленного металла

Диаметр, мм

Основное назначение

Дополнительная или сопутствующая области применения

1

2

3

4

5

ОЗЛ-25Б

Э-10Х20Н70Г2М2Б2В

3,0; 4,0

Сварка жаростойкого и жаропрочного сплава марки ХН78Т

Сварка коррозионно-стойких конструкций и оборудования из сплава марки ХН78Т. Сварка разнородных сталей. Сварка чугуна.

ЦТ-15

Э-08Х19Н10Г2Б

2,0; 2,5; 3,0; 4,0; 5,0

Сварка жаропрочных конструкций и оборудования из сталей типа 12Х18Н9Т, 12Х18Н12Т, Х20Н12Т-Л и Х16Н13Б, работающих при температуре 570-6500С.

Сварка сталей типа 12Х18Н9Т, 12Х18Н12Т, Х20Н12Т-Л и Х16Н13Б, когда к металлу шва предъявляют жесткие требования стойкости к МКК.

ОЗЛ-6

Э-10Х25Н13Г2

3,0; 4,0; 5,0

Сварка жаростойких сталей типа 20Х23Н13 и 20Х23Н18, работающих в окислительных средах при температуре до 10000С

Сварка сталей типа 15Х25Т и стали марки 25Х25Н20С2. Сварка разнородных сталей.

КТИ-7А

Э-27Х15Н35В3Г2Б2Т

3,0; 4,0

Сварка реакционных труб из жаростойких сталей марок 45Х25Н20С2, 45Х20Н35С и 25Х20Н35, работающих при температуре до 9000С в печах конверсии метана

 

ОЗЛ-9А

Э-28Х24Н16Г6

2,5; 3,0; 4,0

Сварка жаростойких сталей типа 12Х25Н16Г7АР, 45Х25Н20С2 и Х18Н35С2, работающих в окислительных средах при температуре до 10500С и в науглероживающих средах при температуре до 10000С

Сварка сталей марок 20Х23Н13 и 20Х23Н18.

ОЗЛ-38

30Х24Н23ГБ

3,0; 4,0

Сварка жаростойких хромоникелевых сталей, преимущественно марки 30Х24Н24Б, работающих при температуре до 9500С

 

ВИ-ИМ-1

06Х20Н60М14В

2,0; 2,5; 3,0; 4,0

Сварка жаропрочных сталей и сплавов типа ХН67МВТЮЛ, ХН64МТЮР, ХН78Т, ХН77ТЮР и ХН56МТЮ

Сварка разнородных сталей и сплавов.

ЦТ-28

Э-08Х14Н65М15В4Г2

3,0; 4,0

Сварка жаростойких и жаропрочных сплавов на никелевой основе типа ХН78Т и ХН70ВМЮТ

Сварка перлитных и хромистых сталей со сплавами на никелевой основе.

ИМЕТ-10

Э-04Х10Н60М24

2,5; 3,0

Сварка жаростойких и жаропрочных сталей и сплавов на никелевой основе типа 37Х12Н8Г8МФБ, ХН67ВМТЮ, ХН75МБТЮ, ХН78Т и ХН77ТЮ

Сварка разнородных сталей и сплавов.

ОЗЛ-2

11Х21Н14М2Г2

3,0; 4,0; 5,0

Сварка жаростойких сталей типа 20Х23Н13, работающих при температуре до 9000С в газовых средах, содержащих сернистые соединения

 

ОЗЛ-39

06Х17Н14Г3С3Ф

3,0; 4,0

Сварка жаростойких сталей типа 20Х20Н14С2, 20Х23Н18, 20Х25Н20С2 и 45Х25Н20С2, работающих в науглероживающих средах при температуре до 10500С

 

ОЗЛ-46

06Х11Н2М2ГФ

3,0; 4,0

Сварка жаропрочных сталей мартенситного типа 1Х12Н2ВМФ и Х12НМБФ-Ш

 

ОЗЛ/ЦТ-31М

18Х18Н34В3Б2Г

3,0; 4,0

Сварка жаростойких сталей марок 20Х25Н20С2, 45Х25Н20С2 и Х18Н35С2, работающих в науглероживающих средах с температурой до 10500С, в том числе при повышенных статических нагрузках на швы

 

ГС-1

09Х23Н9Г6С2

3,0; 4,0

Сварка тонколистовых жаростойких сталей типа 20Х20Н14С2, 20Х25Н20С2 и 45Х25Н20С2, работающих в науглероживающих средах при температуре до 10000С

Сварка корневого и облицовочного слоев шва, обращенных в сторону рабочей науглероживающей среды, в конструкциях из сталей типа 20Х20Н14С2, 20Х25Н20С2 и 45Х25Н20С2 больших толщин

ОЗЛ-5

Э-12Х24Н14С2

3,0; 4,0; 5,0

Сварка жаростойких сталей типа 20Х25Н20С2 и 20Х20Н14С2, работающих в окислительных средах при температуре до 10500С

Заварка дефектов литья из сталей типа 20Х25Н20С2 и 20Х20Н14С2.

ОЗЛ-25

Э-10Х20Н70Г2М2В

3,0

Сварка тонколистовых (толщиной до 6 мм) конструкций и нагревательных элементов из жаростойких сплавов типа ХН78Т

Наплавка облицовочных слоев швов при сварке конструкций из сплавов типа ХН78Т большой толщины.

ОЗЛ-35

10Х27Н70Г2М

3,0; 4,0

Сварка жаростойких сплавов марок ХН70Ю и ХН45Юи других сплавов на никелевой основе, работающих при температуре до 12000С

Сварка облицовочных слоев швов, выполненных электродами других марок.

ОЗЛ-28

20Х27Н8Г2М

2,5; 3,0

См. группу электродов для сварки разнородных сталей и сплавов

Сварка корневых слоев швов жестких конструкций из жаростойкой стали марки 45Х25Н20С2.

Типы рекомендуемых электродов для сварки следующих сталей

AISI марка стали

430

410, 420

321, 348, 347

317

316L

316

316Ti

310, 310S

309, 309S

304L

201, 202, 301, 302, 302B 304, 305, 308

304

310, 312, 309

309, 310, 312

308

308

308

309, 316

308, 318

308

308

308

308

304L

310, 309, 312

309, 310, 312

308

308

308-L

308

308, 318

308

308

308-L

308

309, 309S

310, 309, 312

309, 310, 312

308

317, 316, 309

316

316

316, 309

309

308

308

308

310, 310S

310, 309, 312

310, 309, 312

309

317, 316, 309

316

316

310, 309, 318

310

309, 310

309

309

316

310, 309, 312

309, 310, 312

308

316

316

316

318

310, 309, 316

309, 310, 316

309, 316

309, 316

316L

310, 309, 312

309, 310, 312

308

316, 317, 308

316L

316

318

310, 309, 316

316, 309

308, 316

308, 316

316Ti

310, 309, 312

309, 310, 312

308

318

318

318

318

310, 309, 318

316, 309

308, 318

308, 318

317

310, 309, 312

309, 310, 312

308

317

316, 308

316, 308

318

317, 316, 309

317, 316, 309

308, 316, 317

308, 316, 317

321, 348, 347

310, 309, 312

309, 310, 312

347, 308

308, 347

347, 308

347, 308

308

347, 308

347, 308

347, 308L

347, 308

420, 410

310, 309, 312

410* 309**

309, 310

309, 310

309, 310

309, 310

309, 310, 312

310, 309

309, 310

309, 310

309, 310

430

430, 310, 309

310, 309

310, 309

310, 309

310, 309

310, 309

310, 309, 312

310, 309

310,309

310, 309

310, 309

* Предварительный нагрев

** Нет необходимости в предварительном нагреве

Сварочный процесс для марок 304/304L, 321

Сварочный процесс

Толщина без сварного шва

С учетом сварного шва

Защитная среда

Толщина

Покрытие

Пруток

Проволока

Resistance -spot (точечная) -seam (шов)

≤2mm ≤2mm

 

 

 

 

TIG

<1,5mm

>0.5mm

ER 308 l(Si) W.Nr 1.4370 ER 347 (Si)

ER 308 l(Si) W.Nr 1.4370 ER 347 (Si)

Аргон Аргон + 5% Водород Аргон + Гелий

PLASMA

<1.5mm

>0.5mm

ER 310

ER 308 l(Si) W.Nr 1.4370 ER 347 (Si)

Аргон Аргон + 5% Водород Аргон + Гелий

MIG

 

>0.8mm

 

ER 308 l(Si) W.Nr 1.4370 ER 347 (Si)

Аргон+ 2% CO2 Аргон+ 2 % O2 Аргон+ 3% CO2 + 1% H2 Аргон+ Гелий

S.A.W.

 

>2mm

 

ER 308 L ER 347

 

Electrode

 

Repairs

E 308 E 308L E 347

 

 

Laser

<5mm

 

 

 

Гелий. Иногда Аргон, Азот.

Обычно тепловая обработка после сварки не требуется. Однако, где существует риск межкристаллитной коррозии, производят дополнительное отожжение при 1050-1150°С.

Для марок 304L (низкий углерод) или 321 (стабилизация Ti) это условие - предпочтительно.(Нагрев шва до 1150°С с последующим быстрым охлаждением)

Сварочный шов механическим и химическим способом должен быть очищен от окалины и затем пассивирован травильной пастой.

 

3.  Способы сварки.

 

В производстве сварных труб из нержавеющих сталей применяются следующие основные способы сварки:

- TIG (сварка вольфрамовым электродом в инертном газе, без присадочного металла)

- плазменная сварка (в сочетании с TIG)

- HF (сварка токами высокой частоты)

- Laser (лазерная сварка)

- Electron beam (электронно-лучевая сварка)

В промышленной практике наиболее применяемыми являются первые три способа.

Лазерная технология, которая гарантирует высокий уровень качества, несмотря на значительные первоначальные капиталовложения, получает все более широкое распространение.

Электронно-лучевая сварка применяется нерегулярно по причине сложности технологического процесса, который предполагает наличие установок глубокого вакуума в процессе всего цикла сварки.

Считается, что в настоящее время технология TIG или TIG в сочетании с плазменной сваркой составляют около 65% всех европейских сварочных производств. 30% приходится на сварку HF и остальное – на лазерную сварку.

В действительности не существует конкуренции между различными системами сварки, но, как правило, требования к технологии сварки зависят от сферы применения сварных труб.

Считаем необходимым обозначить в таблице 1 типичные сферы применения нержавеющих труб в зависимости от применяемой сварочной технологии

Сравним две типичные технологии:  TIG и HF.

 

 

3.1. СпособTIG (Tungset Inert Gas)

 

Этот способ более других употребляется для производства сварных труб высокого качества из нержавеющих сталей.

Источником генератора тепла для плавки краев служит дуга, которая образуется между вольфрамовым электродом и трубой. Защитный газ, направляемый на сварочную горелку, обволакивает зону плавки с наружной поверхности трубы и одновременно, но уже другим способом, подается внутрь трубы, чтобы защитить зону плавки и изнутри, удерживаясь там с помощью заглушки.

При способе сварки TIG по причине воздействия тепла только на наружную поверхность трубы зона плавления неизбежно окружается обширной зоной термического раздражения, вследствие чего шов оказывается более широким . Но, по этой же самой причине, TIG-шов является более прочным и легче удаляется.

 

Таблица 1.  Рекомендуемые сферы применения труб с различными способами сварки.

Сфера применения

Способ сварки

Декор, в т.ч. для зеркальной полировки

Конструкции,  в т.ч. строительные

Транспорт (разгрузочные установки, кузова)

 

Высокочастотная (HF) / лазерная (Laser)

Пищевая промышленность

TIG

Транспортировка малоагрессивных жидкостей

TIG

TIG в сочетании с плазменной сваркой

Лазерная сварка

Транспортировка очень агрессивных жидкостей

Химическая, нефтехимическая, газовая, энергетическая, бумажная промышленности

 

TIG

TIG в сочетании с плазменной сваркой

Лазерная сварка

Теплообменники

Испарители

Опреснители

Фармацевтическая промышленность

 

TIG

При соблюдении же технологических параметров сварки не требуется даже дополнительной термической обработки для устранения возможных изменений микроструктуры сварных швов.

При этом скорость TIG-сварки невысока и, поэтому, цена готовой трубы будет выше, чем при использовании других видов сварки.

На рисунке 1 мы видим сварной шов, полученный методом TIG. Шов плотный, однородный, без пустот и раковин. Прочность сварного шва соответствует прочности основного материала трубы.

В директиве ЕС по оборудованию, работающему под давлением (PED – Pressure Equipment Directive), совершенно однозначно указано, что для оборудования, работающего под давлением свыше 0.5 бар могут применяться нержавеющие сварные трубы, произведенные только способом TIG (см. табл.  1)

 

3.2. Высокочастотная сварка (HF)

 

На первый взгляд, особенно с точки зрения микроструктуры, высокочастотная сварка (HF) имеет весьма интересные характеристики, благодаря тому, что зона плавления резко ограничена, а зона термического раздражения (прилегает к зоне плавления) практически отсутствует. Разогрев краев происходит равномерно по всей толщине, а скорость достижения температуры плавки – около одной сотой в секунду. С геометрической точки зрения высадка шва как внутри, так и снаружи оказывается прочной и прямой.

Применение высокочастотной сварки в настоящее время находит все более широкое распространение, в особенности в областях,  связанных с декорированием, строительными конструкциями, промышленным машиностроением. В основном это связано с высокими скоростями, достигаемыми при сварке.

Производительность сварки до 20 раз выше, чем при использовании сварки TIG.

На первый взгляд может показаться, что технология HF выигрывает как с точки зрения качества, так и с точки зрения производственных затрат.

Что касается затрат – тут сомнений нет. Цена труб, произведенных сваркой HF на 10% ниже, чем у труб, изготовленных с применением сварки TIG.

В отношении качества, однако, необходимо отметить, что наиболее ценное свойство, такое как сжатость зоны плавки, в действительности проявляет себя как слабый пункт, когда речь идет о продукции, требующей высокой надежности, такой как, например, химическое и нефтехимическое оборудование, оборудование для пищевой промышленности, теплообменники и т.д.

Действительно, совершенно очевидно, что необходимые свойства сварного шва могут быть достигнуты только при наличии гарантии сохранения условий и параметров процесса, которые не так легко достигаемы в высокоскоростном процессе HF-сварки. Более того, при недостаточной обработке кромок и ввиду контактного процесса сварки в сварном шве могут образовываться раковины и непровары.

Наглядно это показано на рисунке 2. Мы можем видеть, что сварной шов неплотный, в нем присутствуют пустоты, которые самым отрицательным образом сказываются на прочности сварного соединения.

Симптоматичен тот факт, что сферы применения техники высокочастотной сварки весьма ограничены и сведены к производству труб декоративного, структурного или механического назначения при полном исключении их применения в термоустановках, оборудовании пищевой, химической и нефтехимической, фармацевтической промышленности.